Assessing the assessment: Mutual information between response choices and factor scores
Cole Walsh and N.G. Holmes
Laboratory of Atomic & Solid State Physics, Cornell University, Ithaca, NY, 14853

Mutual Information

\[ I(F; R) = \sum_{f \in F} \sum_{r \in (0,1)} p(r, f) \log_2 \frac{p(r, f)}{p(r)p(f)} \]

- \( I\) is the reduction in the number of yes/no guesses required to exactly guess \( f \) after observing \( R \).
- For optimal guessing strategy (dividing the probability distribution in half with each guess: "is \( f \) greater than \( f_0 \)?").

\( I(F; R) \) is the reduction in the number of yes/no guesses required to exactly guess \( f \) after observing \( R \).

Quantitative Interpretation

Suppose I know the distribution of factor scores (say, for the Evaluating Models factor) and I wanted to guess a particular student's score on that factor. I take the optimal guessing strategy, (dividing the probability distribution in half with each guess: "is \( f \) greater than \( f_0 \)?").

Why Mutual Information?

Mutual information can be used alongside more traditional methods, such as classical test theory (CRT) and item response theory (IRT), to evaluate the utility of individual questions. Unlike CRT, and without the model assumptions of IRT, using mutual information we can evaluate the utility of the response choices available to each question based on how much information they provide about latent student abilities.

Unlike IRT, calculating mutual information between response choices and factor scores does not require that questions are scored on a binary scale.

Data & Factor Analysis

Data was collected from the Physics Lab Inventory of Critical thinking (PLIC) administered to 90 classes across 39 unique institutions for a total 7525 surveys.

A confirmatory factor analysis (CFA) is performed to evaluate the proposed factor structure. Maximum likelihood estimation is used to extract variances from the data. Factor scores are calculated using Thurstone's regression method.

Results from the CFA indicate the proposed factor structure adequately models the data (CFI > 0.90; RMSEA < 0.05; SRMR < 0.05). Researchers and instructors who use the PLIC can separate students' scores on the instrument into three factor scores and evaluate their data in this context.

Takeaways

Results from the CFA indicate the proposed factor structure adequately models the data (CFI > 0.90; RMSEA < 0.05; SRMR < 0.05). Researchers and instructors who use the PLIC can separate students' scores on the instrument into three factor scores and evaluate their data in this context.

Similar to IRT, this method using mutual information between response choices and factor scores allows us to examine which response choices provide the most information about a student's latent abilities.

The most novice and expert response choices (as identified by expert physicists) are typically the most informative. This is not always the case; certain response choices, such as Q2D_33, are expert-like and worth more points, but are relatively uninformative about students' latent abilities — they are picked by high and low performing students.

We can use this method as part of the assessment development process to drop (or modify) relatively uninformative response choices, add new ones, and repeat!